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S1. Phase and propagation losses. Complex
Refractive Index
The phase and losses of a wave could be expressed in a compact
way employing the complex refractive index (nc) as follows:

eik0xnc = e−k0xni eik0xnr (S1)

where e(ik0nrx) and e(− k0nix) account for the phase and losses
respectively, nc = nr + ini is the complex refractive index, nr/ni

are the real/imaginary part of the refractive index, k0 = 2π/λ0

is the free space wavenumber and λ0 the free space wavelength.
In a typical light-propagation device formed by a high refractive
index value dielectric thin film material in air or deposited on
a low refractive index substrate, the field is mostly confined in
the high-refractive index material, and guided by total internal
reflection. Neither the phase nor the losses could be expressed
directly by the refractive index of the core, because part of the
light is propagated via the evanescent field in the surrounding
media. The phase is related to an effective refractive index ne f f ,
defining the propagation constant β = 2πne f f /λ0 and the losses
are usually expressed in cm−1 (or decibels dB cm−1), designed
usually by α. The solutions are discrete, and are characterized by
different ne f f , β , α and intensity profiles, which depend on the
material and the geometry of the optical device. Each of these
solutions or modes defines both, the light propagation as well as
the resonant conditions.

In our first approximation, for simplicity, we consider a normal
incident light propagating isotropically as a plane wave (with an
infinite cross-section), so the form of the complex refractive index
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(Equation S1) of the bulk material could be used.

S2. Transmittance
Consider a plane-parallel sample, deposited on a glass surface
(Figure 1). Therefore, the optical system is defined by three mate-
rials (1:substrate, 2:sample and 3:air) and two interfaces or semi-
transparent dielectric mirrors (interfaces 1 and 2). In a transmit-
tance experiment, the sample is illuminated from one side, ideally
by a planar wave defined by an electric field amplitude Ein and a
free space wavelength λ0. The light enters into the sample by
crossing the first dielectric interface (see Figure S1). As a result,
the wave is affected by a transmission coefficient (t12). Next, it
propagates into the material of interest, experimenting a wave-
length change (λm = λ0/nr), a phase change and an attenuation
(eik0Lnc ). Finally a portion of light escapes through the second
dielectric interface (t23) arriving to the detector, or is reflected
(r23). The reflected light recursively returns to the first interface,
is reflected again (r21) and propagates through the sample for the
second time (e2ik0Lnc ), loosing intensity on each round trip. In
fact, part of this lost light is transmitted (t23) towards the detec-
tor. In summary, the light behaviour could be expressed as:

Eout = Eint12t23eik0Lnc +EinΘt12t23eik0Lnc +EinΘ2t12t23eik0Lnc + . . .+EinΘNeik0Lnc + . . .

(S2)
where Θ represents a round trip (Θ = r21r23e2ik0Lnc ). Regroup-

ing Equation S2 in a convenient way, Θ forms a geometrical series
(1+Θ+Θ2 + . . .+ΘN + . . .= 1/(1−Θ)). As a result, Equation S2
could be expressed in a compact way:

Eout =
Ein

(
t12t23eik0Lnc

)
1−Θ

(S3)

Assuming the tranmission and reflection coefficients as real, ex-
panding the propagation of the round trip into its real (a =
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Figure S1 Scheme of light propagation in transmittance and PL.

e−2k0Lni ) and immaginary parts ( b = e2β iL, where β = k0nr), and
considering the addition of the exponential with its conjugate
(b∗+b = 2cos(2βL)), the Transmittance (T ) takes the form of:

T =
∣∣∣Eout

Ein

∣∣∣2 = at2
12t2

23
a2r2

21r2
23−2ar21r23 cos(2βL)+1

, (S4)

where t12, t23, r21 and r23 coefficients could be calculated by em-
ploying the Fresnel Equations.1

S2.1 Large transmittance and enhancement factor

The possibility of reaching full transmittance with a lossless (a =

1) and symmetrical cavity is mentioned in section 2.1. Here, we
extend these concepts: LetâĂŹs quantify the cavity asymmetry as
the ratio between reflections y = r23/r21(notice that y = 1 means
a symmetrical cavity). Assuming lossless interfaces, t2

i j = 1− r2
i j,

for i, j = 1,2,3, Equation 3 and 4 turn into:

T±,lossless = 1−
r2
21(1∓ y)2(
1∓ yr2

21
)

2 (S5)

and

Vlossless =
4r2

21y(
r2
21y+1

)2 (S6)

Equation S5 and S6 allow calculating the maximum transmit-
tance T+ and visibility V , as a function of the cavity asymme-
try, y, for a lossless cavity. They confirm that full transmittance
(T+ = 1) is achieved for y=1, i.e. when the cavity is symmet-
ric. As a result, the asymmetry and the absorption act as trans-
mission penalties. In order to diminish T− and to maximize V ,
the lossless and symmetry conditions should be completed with
a large reflectance. Those optical devices, that accomplish these
conditions, are usually known as high- or ultrahigh-quality fac-
tor resonators (see Section S7)1. The possibility of obtaining a
high output signal (T+) is originated by an amplified intracavity

propagating wave, that travels from the source to the output in-
terface (I1→3 = Iout/t2

23). The interference of this forward signal
with its backward reflection (I3→1 = I1→2r2

23) results in a standing
wave featured by m-number of peaks with an enhanced intensity
(Iinside = I1→3 + I3→1 + 2

√
I1→3I3→1)2. The relation between in-

tracavity and excitation intensity defines the peak enhancement
factor (PEF),

PEF =
(r23 +1)2 T+

t2
23

. (S7)

As a consequence, light-mater interactions are expected to be
magnified inside the cavity, thus boosting photochemical pro-
cesses such as energy harvesting3, and photocatalysis4. While
T+ is symmetric for an asymmetric cavity, in the sense that it
does not depend on which face (substrate/active-material active-
material/air) is chosen for inserting or extracting the light, PEF is
asymmetric, therefore it changes depending on the orientation of
the sample. Noteworthy, the magnified output intensity produced
by the amplified intracavity light fulfills energy conservation rules
since the reflection spectra presents dips on one face whenever
transmission peaks appear in the other face (see Section S3).

S3. Reflectance

The reflectance could be calculated in a similar way as the trans-
mittance. Here, a determinative element is present: the reflection
from the 1st interface (r12 see Figure S1) that is collected by the
detector. This wave will interfere with the backward transmit-
ted light (t21) from the series light round-trips inside the sam-
ple. The first round-trip is composed by a single reflection, and
the following contributions are equal to those of transmission
(Θ = r21r23e2ik0Lnc ):

Eout = Ein
(
r12 + r23t12t21e2ik0Lnc + r23t12t21Θe2ik0Lnc + . . .+ r23t12t21ΘNe2ik0Lnc + . . .

)
(S8)
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Eout = Ein

(
r23t12t21e2ik0Lnc

1−Θ
+ r12

)
= Ein

r23(t12t21−r21r23)e2ik0Lnc+r12
1−Θ

(S9)
Considering lossless interfaces, the time-reversal symmetry allow
us, without loss of generality, to state t12t21−r21r23 =−12. So the
Equation S9 assumes the compact form:

Eout = Ein
r12− r23e2ik0Lnc

1−Θ
(S10)

and the optical reflectance (R) takes the expression,

R =
∣∣∣Eout

Ein

∣∣∣2 = (
a2r23

)2−2ar23r12cos(2βL)+ r2
12

a2r2
21r2

23−2ar21r23cos(2βL)+1
, (S11)

under resonant condition (2βL = 2π),

Rres =
∣∣∣Eout

Ein

∣∣∣2 = (
r12−ar23

1−ar21r23

)2
(S12)

While the Transmittance shows a train of peaks, the reflexion
spectrum shows dips. In this case, for obtaining an on-resonance
null signal (the deepest dip), the numerator must be zero (r12 =

ar23). This is the so-called critical coupling. In this case, it can
only happen when r23 > r12 , otherwise the optical system remains
in an undercoupled regime, where the light injection underpass
the lost light inside the resonator. For a symmetrical system,
where r12 = r23, the only possibility to obtain critical coupling
is the ideal case when the material losses are neglected (a = 1).
In summary, for obtaining the deepest reflectance dip, the glass
substrate should be the exposed area to the illumination, and the
uncovered surface to the detector side because the reflectance
coefficient of the perovskite/air interface is higher than that of
the perovskite/glass interface. The reflectance characterization is
more complex than the optical transmission because of the spuri-
ous reflection of optical components as well as the coupling condi-
tions. This is the reason why we have employed the transmittance
signal in this study.

S4. PL model

The Transmission and reflection spectra of the optical system help
to understand the PL model. Although the PL emission occurs
inside the cavity along all directions, since our approach is one-
dimensional, here we assume PL emission only in the forward and
backward directions (see Figure S1). Each section of infinitesimal
thickness of the sample (placed at x-distance from the first inter-
face) is excited by the pump signal, that has lost some intensity
in its way from the interface to the section. This loss is related
to the exponential term (a(p)x = e2x−k0(p)ni(p)). Here, the addition
of (p) to the subindex implies the pump signal. Therefore, in this
expression, k0(p) corresponds to the wave number in vacuum of
the excitation light and ni(p) corresponds to the complex part of
the refractive index for such wave number. dIPL of Equation S13
expresses the PL intensity emitted by the section and it can be
quantified according to the generalized Planck law5,6.

IdPL =
2k0ξ niE2

hpNhp

e
(Ehp−µ)

T kB −1

dx, (S13)

where Eph is the energy of the emitted photons, µ is the Fermi
level, kB is the Boltzmann constant, T the temperature, dx is the
thickness of the differential section, Nph is the number of pumping
photons, ξ = η/(c2h3) includes the photogeneration efficiency η ,
h being the Plank constant, and c the light speed, so that ξ ·Nph

allows us normalizing the PL intensity. The light emitted by a
given section at the output interface can be calculated by treat-
ing it as a transmittance problem (Figure S1), where the emit-
ted light (dIPL) weighted by the loss term of the pumping sig-
nal (ax(p)) would represent the incident light intensity (≈ |Ein|2)
for that section. This yields Equation S14 and S15 for the for-
ward and backward emissions respectively, which are similar to
Equation S4, except for terms of losses: (aL−x = e2−k0ni(L−x)) and
(aL+x = e2−k0ni(L+x)) where the distance from the entering inter-
face, x, has been taken into account, and the term t12(p) that cor-
responds to the transmittance coefficient of the pumping signal,
t12(p) could actually be included in the normalization term ξ ·Nph,

PL-forward,dIotu− f =
ax(p)dILPt2

23t2
12(p)aL−x

a2r2
21r2

23−2r23ar21 cos(2βL)+1
(S14)

PL-backward,dIotu−b =
ax(p)dILPr2

21t2
23t2

12(p)aL+x

a2r2
21r2

23−2ar21r23cos(2βL)+1
. (S15)

The PL signal emitted by the sample (Equation 6), results from
the integration of the incoherent addition of S14 and S15 over L.

S5. Spectral dependencies

From a Taylor expansion of the cosine term around the reso-
nant condition of an m-order mode and neglecting the high order
terms:

cos(2βL)≈ 1−2L2 (β −βm)
2 (S16)

proceeding in a similar way with β ,

β = βm +
dβ

dλ
∆λ , (S17)

where
dβ

dλ
= k0

dnr

dλ
− β

λ
. (S18)

Defining the group index ng that takes into the account the dis-
persion,

ng = nr−λ
dnr

dλ
, (S19)

then
dβ

dλ
=
−k0ng

λ
(S20)

and

cos(2βL)≈ 1−
2L2∆λ 2k2

0n2
g

λ 2 . (S21)

Substituting the last Equation S20 into the Transmission (Equa-
tion 2) and regrouping terms, we obtain the Lorenzian form,

Tpeak ≈
T+ (∆λh/2)2

(λ −λr)
2 +(∆λh/2)2 (S22)
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with a spectral broadness called Full Width at Half Maximum
(∆λh)

∆λh ≈
λ 2 (1−ar21r23)

2πLng
√

ar21r23
. (S23)

As expected, resonant peak features in both, the Transmittance
and the PL spectra get narrower by large values of the reflection
coefficients ri j and low attenuation losses (large a value). Other
important parameter is the distance between peaks, the so-called
Free Spectral Range (FSR). In this case we consider the relation
of the propagation constant between two adjacent modes:

βm−1 ≈ βm−
2π

2L
. (S24)

Using Equation S17 and S20 for the Taylor series of β between
βm−1 and βm (assuming ∆λ � λ), we can access ∆λ , that permits
to express the FSR as:

FSR = ∆λFSR ≈
λ 2

2Lng
(S25)

The parameter Finesse (F) of a resonance, is defined as the rela-
tion between the FSR and the peak broadening ∆λh:

F =
∆λFSR

∆λh
≈

π
√

ar21r23

1−ar21r23
, (S26)

on another hand, it is also customary defining the quality factor
Q as:

Q =
λ

∆λh
≈

2πLng
√

ar21r23

λ (1−ar21r23)
. (S27)

Noteworthy, resonators with high values of both F and Q factors
feature low losses and high reflectance parameters, (r21, r23 and
a tends to one). Therefore, optical features of these resonators
show isolated and well separated narrow peaks in their spectra.

S6. Additional results of the fitting process
Figure S2 (a) displays fundamental optical parameters showing
an increase/decrease of the ratio ri j/ti j (i, j = 1,2,3) in the prox-
imity of the absorbance edge (where a tends to zero) due to the
increase of the refractive index contrast. This can explain why
those resonances with maximum values of Q and F appear around
this region with relative high light confinement and moderate ab-
sorption (Figure S2 (b)). This Figure shows that PEF is asymmet-
ric and as expected is maximized when the light enters from the
most transparent interface. Noteworthy F is proportional to PEF.

S7. Analogies between resonators
The same results of this study could be obtained by applying the
more compact but probably less phenomenological coupled mode
theory. Such a procedure is useful when the sample presents a
multilayer structure7 with more than two interfaces. It is worth
to mention that the Fabry-Pérot cavity that we have analysed
above is equivalent to a Whispery Gallery Mode (WGM) res-
onator coupled to two waveguides, where transmittance and re-
flectance correspond to drop and through ports response respec-
tively. The amplitude coefficients (t and r) are related to the cou-
pling/transmittance coefficients (with interchanged roles, repre-
sented usually by r or k, and t respectively), the thickness of the

Figure S2 (a) Fundamental parameters that characterize the dielectric
semi-transparent mirrors (r21, r23, t12, t23) and the term related to the
absorption. (b) Resonator parameters under normal incidence/emission,
derived from the fundamental optical parameters. The substrate is placed
in the 2nd interface. The terms of the subindex (in) and (out) of PEFin→out
represent the incidence and output material respectively. The dots mark
the resonant positions. The series of numbers represent the m-mode
order.

Fabry-Pérot cavity is equal to the round-trip length (2L = 2πR for
circular WGM resonators) and the refractive and group indexes
are defined by effective values that depend on the cross section
geometry and the excited propagation mode (see S1). Moreover,
forcing r23 = 1 and t23 = 0 (tadd→drop = 1 and kresonator→drop = 0 in
a WGM cavity) the Equations become more compact and describe
a simpler pass-trough WGM configuration with an only one bus-
waveguide. In this way, all the Equations and concepts could be
directly extrapolated to a WGM resonator with one exception: the
enhancement factor is lower in a WGM resonator because of the
absence of a counter-propagating wave. However, the presence
of surface roughness could excite the counter propagating mode
and thus the formation of a stationary wave8, with an increased
enhancement factor, similar to that of the Fabry-Pérot resonator.

S8. Material Characterization
Figure S3 shows the performed material characterization consist-
ing in X-ray diffraction (XRD) and ultraviolet-visible spectropho-
tometry (UV-Vis) that corresponds to the formation of crystalline
MAPbBr3 Perovskite9.

S9. Additional data
Figure S4 displays an additional spectra of OT(a) and PL(b) of a
8.65 µ m-thick crystal. Comparing these curves to those of the
sample of Fig4 (a,b), the spectral density of the ripples is clearly
increased, or the FSR is diminished as expected(see 2.3). The real

Figure S3 (a) X-ray diffraction (XRD) and (b) ultraviolet-visible spec-
trophotometry (UV-Vis) of the synthetized material.

104 | 1–5Journal Name, [year], [vol.],



Figure S4 (a) Experimental data and (b) fitted curves for the OT and
the PL spectra respectively of an additional sample. (c) Real and (d)
imaginary part comparation of 11 and those extracted from the Fit of Fig
4 and pannels (a-b).

part (c) of the refractive index follows the same tendency of the
imaginary part (c) for both samples. The small deviation could
be due to slight differences in sample preparation, degradation as
well as background and sample acquisition. In any case, the dif-
ference in the real part of the refractive index obtained from both
measurements is at most around 1%, at the double fit spectral
region, which is considerably smaller than the values dispersion
obtained when comparing measurements from different labora-
tories10.

S10. Photocarrier and Thermo-optical effects
As it is mentioned in the methods, two different light sources are
employed, a blue light for acquiring the PL signal and a white
source for characterizing the transmittance. As a result, one is set
inside the absortion spectral region and the other covers mostly
the transparent one respectively. One can think that the excited
photocarriers, radiative recombination and sample temperature
are different for the PL and OT experiments. This could lead to a
differences in the refractive index because of excited-carrier dis-
persion and thermo-optical effects. Although the employed power
regimes could be considered so low for observing such effects,

the sample acts as a resonant cavity (with an enhancement light-
matter interaction) and the material could show a giant thermo-
optical coefficient (as another hybrid perovskite, MAPbCl3 12,13).
Therefore it is not possible to fully discard refractive index devi-
ations between PL and OT experiments. In order to character-
ize this possible discrepancy, an additional parameter has been
added to the fitting process. In particular, this new term regis-
ters the spectral deviation between curves. This results in around
0.03 nm that is below the monochromator resolution. As a re-
sult, possible refractive index discrepancies between OT and PL
characterization could be considered as neglegible.
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